آمار پارامتری

آمار پارامتری به مجموعه روش‌های آماری‌ای گفته می‌شود که مدل‌ای پارامتری برای پدیدهٔ احتمالی مورد مطالعه فرض می‌شود و همهٔ استنتاج‌های آماری از آن پس بر اساس آن مدل انجام می‌شود.






به عنوان مثال فرض می‌شود که توزیع نمره‌های یک امتحان از توزیع نرمال پیروی می‌کند. در نتیجه برای مشخص‌شدن توزیع احتمال، کافی است میانگین و واریانس توزیع را از روی داده‌های تجربی (نمره‌های دانش‌آموزان) به دست بیاوریم. حال برای پاسخ‌گفتن به سوال‌هایی چون «درصد دانش‌آموزانی که نمره‌ای بین ۱۰ تا ۱۵ آورده‌اند» از تابع توزیع به دست آمده استفاده می‌کنیم (البته بدیهی است که روش‌های ساده‌تری نیز برای چنین کاری وجود دارد).

نقطهٔ ضعف این شیوهٔ تحلیل آماری این است که در صورتی که مدل فرض‌شده با واقعیت تطبیق نداشته باشد، نتیجه‌گیری‌ها صحیح نخواهد بود.





آماره

آماره در آمار به عددی گویند که یک توزیع نمونه‌برداری را خلاصه‌سازی یا توصیف می‌کند.

تابع U=g(X۱, X۲, …, Xn)‎ از نمونهٔ تصادفی X۱, X۲, …, Xn را که در آن پارامتر مجهولی وجود نداشته باشد یک آماره می‌گویند. در این تعریف U یک متغیر تصادفی است که توزیع آن ممکن است به پارامتر بستگی نداشته باشد؛ اما تنها آماره‌هایی برای برآورد کردن مفید هستند که توزیعشان به پارامتر مجهول بستگی داشته باشد و اطلاعاتی در مورد این پارامتر به ما بدهند.





آنتروپی آماری
انتروپی آماری یک کمیت ترمودینامیکی است که در شیمی‌فیزیک کاربردهای فراوان دارد.





استنباط آماری
چنانچه به جای مطالعه کل اعضای جامعه، بخشی از آن با استفاده از فنون نمونه‌گیری انتخاب شده، و مورد مطالعه قرار گیرد و بخواهیم نتایج حاصل از آن را به کل جامعه تعمیم دهیم از روش‌هایی استفاده می‌شود که موضوع آمار استنباطی (Inferential statistics) است. آن چه که مهم است این است که در گذر از آمار توصیفی به آمار استنباطی یا به عبارت دیگر از نمونه به جامعه بحث و نقش احتمال شروع می‌شود. در واقع احتمال، پل رابط بین آمار توصیفی و استنباطی به حساب می‌آید.





توزیع جامعه

توزیع جامعه یا توزیع جمعیت (به انگلیسی: Population distribution) در آمار به توزیع تمام مشاهدات امکان پذیر را گویند.





چولگی

در آمار و نظریه احتمالات چولگی نشان دهنده میزان عدم تقارن توزیع احتمالی است. اگر داده‌ها نسبت به میانگین متقارن باشند، چولگی برابر صفر خواهد بود.






تعریف

چولگی برابر با گشتاور سوم نرمال شده است. چولگی در حقیقت معیاری از وجود یا عدم تقارن تابع توزیع می باشد. برای یک توزیع کاملاً متقارن چولگی صفر و برای یک توزیع نامتقارن با کشیدگی به سمت مقادیر بالاتر چولگی مثبت و برای توزیع نامتقارن با کشیدگی به سمت مقادیر کوچکتر مقدار چولگی منفی است.





داده‌کاوی

داده کاوی، پایگاه‌ها و مجموعه‌های حجیم داده‌ها را در پی کشف واستخراج دانش، مورد تحلیل و کند و کاوهای ماشینی (و نیمه‌ماشینی) قرار می‌دهد. این گونه مطالعات و کاوش‌ها را به واقع می‌توان همان امتداد و استمرار دانش کهن و همه جا گیر آمار دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینه‌ها و کاربردها، و نیز ابعاد و اندازه‌های داده‌های امروزین است که شیوه‌های ماشینی مربوط به یادگیری، مدل‌سازی، و آموزش را طلب می‌نماید.

در سال 1960 آماردانان اصطلاح "Data Fishing" یا "Data Dredging"به معنای "صید داده" را جهت کشف هر گونه ارتباط در حجم بسیار بزرگی از داده ها بدون در نظر گرفتن هیچگونه پیش فرضی بکار بردند. بعد از سی سال و با انباشته شدن داده ها در پایگاه های داده یا Database اصطلاح "Data Mining" یا داده کاوی در حدود سال 1990 رواج بیشتری یافت. اصطلاحات دیگری نظیر "Data Archaeology"یا "Information Harvesting" یا "Information Discovery" یا"Knowledge Extraction" نیز بکار رفته اند.

اصطلاح Data Mining همان طور که از ترجمه آن به معنی داده کاوی مشخص می‌شود به مفهوم استخراج اطلاعات نهان و یا الگوها وروابط مشخص در حجم زیادی از داده‌ها در یک یا چند بانک اطلاعاتی بزرگ است.






مقدمه

بسیاری از شرکت‌ها و موسسات دارای حجم انبوهی از اطلاعات هستند. تکنیک‌های داده‌کاوی به طور تاریخی به گونه‌ای گسترش یافته‌اند که به سادگی می‌توان آنها را بر ابزارهای نرم‌افزاری و ... امروزی تطبیق داده و از اطلاعات جمع آوری شده بهترین بهره را برد.

در صورتی که سیستم‌های Data Mining بر روی سکوهای Client/Server قوی نصب شده باشد و دسترسی به بانک‌های اطلاعاتی بزرگ فراهم باشد، می‌توان به سوالاتی از قبیل :کدامیک از مشتریان ممکن است خریدار کدامیک از محصولات آینده شرکت باشند، چرا، در کدام مقطع زمانی و بسیاری از موارد مشابه پاسخ داد.






ویژگی‌ها

یکی از ویژگیهای کلیدی در بسیاری از ابتکارات مربوط به تامین امنیت ملی، داده کاوی است. داده کاوی که به عنوان ابزاری برای کشف جرایم، ارزیابی میزان ریسک و فروش محصولات به کار می‌رود، در بر گیرنده ابزارهای تجزیه و تحلیل اطلاعات به منظور کشف الگوهای معتبر و ناشناخته در بین انبوهی از داده هاست. داده کاوی غالباً در زمینه تامین امنیت ملی به منزله ابزاری برای شناسایی فعالیت‌های افراد خرابکار شامل جابه جایی پول و ارتباطات بین آنها و همچنین شناسایی و ردگیری خود آنها با برسی سوابق مربوط به مهاجرت و مسافرت هاست. داده کاوی پیشرفت قابل ملاحظه‌ای را در نوع ابزارهای تحلیل موجود نشان می‌دهد اما محدودیت‌هایی نیز دارد. یکی از این محدودیت‌ها این است که با وجود اینکه به آشکارسازی الگوها و روابط کمک می‌کند اما اطلاعاتی را در باره ارزش یا میزان اهمیت آنها به دست نمی‌دهد. دومین محدودیت آن این است که با وجود توانایی شناسایی روابط بین رفتارها و یا متغیرها لزوماً قادر به کشف روابط علت و معلولی نیست. موفقیت داده کاوی در گرو بهره گیری از کارشناسان فنی و تحلیل گران کار آزموده‌ای است که از توانایی کافی برای طبقه بندی تحلیل‌ها و تغییر آنها برخوردار هستند. بهره برداری از داده کاوی در دو بخش دولتی و خصوصی رو به گسترش است. صنایعی چون بانکداری، بیمه، بهداشت و بازار یابی آنرا عموماً برای کاهش هزینه‌ها، ارتقاء کیفی پژوهش‌ها و بالاتر بردن میزان فروش به کار می‌برند. کاربرد اصلی داده کاوی در بخش دولتی به عنوان ابزاری برای تشخیص جرایم بوده‌است اما امروزه دامنه بهره برداری از آن گسترش روزافزونی یافته و سنجش و بهینه سازی برنامه‌ها را نیز در بر می‌گیرد. بررسی برخی از برنامه‌های کاربردی مربوط به داده کاوی که برای تامین امنیت ملی به کار می‌روند، نشان دهنده رشد قابل ملاحظه‌ای در رابطه با کمیت و دامنه داده‌هایی است که باید تجزیه و تحلیل شوند. توانایی‌های فنی در داده کاوی از اهمیت ویژه‌ای برخوردار اند اما عوامل دیگری نیز مانند چگونگی پیاده سازی و نظارت ممکن است نتیجه کار را تحت تأثیر قرار دهند. یکی از این عوامل کیفیت داده هاست که بر میزان دقت و کامل بودن آن دلالت دارد. عامل دوم میزان سازگاری نرم‌افزار داده کاوی با بانکهای اطلاعاتی است که از سوی شرکت‌های متفاوتی عرضه می‌شوند عامل سومی که باید به آن اشاره کرد به بیراهه رفتن داده کاوی و بهره برداری از داده‌ها به منظوری است که در ابتدا با این نیت گرد آوری نشده‌اند. حفظ حریم خصوصی افراد عامل دیگری است که باید به آن توجه داشت. اصولاً به پرسش‌های زیر در زمینه داده کاوی باید پاسخ داده شود:

سازمانهای دولتی تا چه حدی مجاز به بهره برداری از داده‌ها هستند؟
آیا از داده‌ها در چارچوبی غیر متعارف بهره برداری می‌شود؟
کدام قوانین حفظ حریم خصوصی ممکن است به داده کاوی مربوط شوند؟

کاوش در داده‌ها بخشی بزرگ از سامانه‌های هوشمند است. سامانه‌های هوشمند زیر شاخه‌ایست بزرگ و پرکاربرد از زمینه علمی جدید و پهناور یادگیری ماشینی که خود زمینه‌ای‌ست در هوش مصنوعی.

فرایند گروه گروه کردن مجموعه‌ای از اشیاء فیزیکی یا مجرد به صورت طبقه‌هایی از اشیاء مشابه هم را خوشه‌بندی می‌نامیم.

با توجه به اندازه‌های گوناگون (و در اغلب کاربردها بسیار بزرگ و پیچیده) مجموعه‌های داده‌ها مقیاس‌پذیری الگوریتم‌های به کار رفته معیاری مهم در مفاهیم مربوط به کاوش در داده‌ها است.

کاوش‌های ماشینی در متون حالتی خاص از زمینهٔ عمومی‌تر کاوش در داده‌ها بوده، و به آن دسته از کاوش‌ها اطلاق می‌شود که در آن‌ها داده‌های مورد مطالعه از جنس متون نوشته شده به زبان‌های طبیعی انسانی باشد.






چیستی

داده کاوی به بهره گیری از ابزارهای تجزیه و تحلیل داده‌ها به منظور کشف الگوها و روابط معتبری که تا کنون ناشناخته بوده‌اند اطلاق می‌شود. این ابزارها ممکن است مدلهای آماری، الگوریتم‌های ریاضی و روش‌های یاد گیرنده (Machine Laming Method) باشند که کار این خود را به صورت خودکار و بر اساس تجربه‌ای که از طریق شبکه‌های عصبی (Neural Networks) یا درخت‌های تصمیم گیری (Decision Trees) به دست می‌آورند بهبود می‌بخشد. داده کاوی منحصر به گردآوری و مدیریت داده‌ها نبوده و تجزیه و تحلیل اطلاعات و پیش بینی را نیز شامل می‌شود برنامه‌های کاربردی که با بررسی فایل‌های متن یا چند رسانه‌ای به کاوش داده‌ها می پردازند پارامترهای گوناگونی را در نظر می‌گیرد که عبارت اند از:

قواعد انجمنی (Association): الگوهایی که بر اساس آن یک رویداد به دیگری مربوط می‌شود مثلاً خرید قلم به خرید کاغذ.
ترتیب (Sequence): الگویی که به تجزیه و تحلیل توالی رویدادها پرداخته و مشخص می‌کند کدام رویداد، رویدادهای دیگری را در پی دارد مثلاً تولد یک نوزاد و خرید پوشک.
پیش بینی(Prediction): در پیش بینی هدف پیش بینی یک متغیر پیوسته می باشد. مانند پیش بینی نرخ ارز یا هزینه های درمانی.
رده بندی یا طبقه بندی (Classification): فرآیندی برای پیدا کردن مدلی است که رده های موجود در داده‌ها را تعریف می نماید و متمایز می کند، با این هدف که بتوان از این مدل برای پیش بینی رده رکوردهایی که برچسب رده آنها(متغیر هدف) ناشناخته می باشد، استفاده نمود. در حقیقت در رده بندی بر خلاف پیش بینی، هدف پیش بینی مقدار یک متغیر گسسته است. روش های مورد استفاده در پیش بینی و رده بندی عموما یکسان هستند.
خوشه بندی(Clustering): گروه بندی مجموعه ای از اعضاء، رکوردها یا اشیاء به نحوی که اعضای موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را به اعضای خوشه های دیگر داشته باشند.
مصورسازی (visualization): مصورسازی داده ها یکی از قدرتمندترین و جذابترین روش های اکتشاف در داده ها می باشد.

برنامه‌های کاربردی که در زمینه تجزیه و تحلیل اطلاعات به کار می‌روند از امکاناتی چون پرس و جوی ساخت یافته (Structured query) که در بسیاری از بانک‌های اطلاعاتی یافت می‌شود و از ابزارهای تجزیه و تحلیل آماری برخوردارند اما برنامه‌های مربوط به داده کاوی در عین برخورداری از این قابلیت‌ها از نظر نوع با آنها تفاوت دارند. بسیاری از ابزارهای ساده برای تجزیه و تحلیل داده‌ها روشی بر پایه راستی آزمایی (verifiction)را به کار می‌برند که در آن فرضیه‌ای بسط داده شده آنگاه داده‌ها برای تایید یا رد آن بررسی می‌شوند. به طور مثال ممکن است این نظریه مطرح شود که فردی که یک چکش خریده حتماً یک بسته میخ هم خواهد خرید. کارایی این روش به میزان خلاقیت کاربر برای ارایه فرضیه‌های متنوع و همچنین ساختار برنامه بکار رفته بستگی دارد. در مقابل در داده کاوی روشهایی برای کشف روابط بکار برده می‌شوند و به کمک الگوریتم‌هایی روابط چند بعدی بین داده‌ها تشخیص داده شده و آنهایی که یکتا (unique) یا رایج هستند شناسایی می‌شوند. به طور مثال در یک فروشگاه سخت‌افزار ممکن است بین خرید ابزار توسط مشتریان با تملک خانه شخصی یا نوع خودرو، سن، شغل، میزان درآمد یا فاصله محل اقامت آنها با فروشگاه رابطه‌ای برقرار شود.

در نتیجه قابلیت‌های پیچیده‌اش برای موفقیت در تمرین داده کاوی دو مقدمه مهم است یکی فرمول واضحی از مشکل که قابل حل باشد و دیگری دسترسی به داده متناسب. بعضی از ناظران داده کاوی را مرحله‌ای در روند کشف دانش در پایگاه داده‌ها می‌دانند (KDD). مراحل دیگری در روند KDD به صورت تساعدی شامل، پاکسازی داده، انتخاب داده انتقال داده، داده کاوی، الگوی ارزیابی، و عرضه دانش می‌باشد. بسیاری از پیشرفت‌ها در تکنولوژی و فرایندهای تجاری بر رشد علاقه‌مندی به داده کاوی در بخش‌های خصوصی و عمومی سهمی داشته‌اند. بعضی از این تغییرات شامل:

رشد شبکه‌های کامپیوتری که در ارتباط برقرار کردن پایگاهها داده مورد استفاده قرار می‌گیرند.
توسعه افزایش تکنیکهایی بر پایه جستجو مثل شبکه‌های عصبی و الگوریتم‌های پیشرفته.
گسترش مدل محاسبه کلاینت سروری که به کاربران اجازه دسترسی به منابع داده‌های متمرکز شده را از روی دسک تاپ می‌دهد.
و افزایش توانایی به تلفیق داده از منابع غیر متناجس به یک منبع قابل جستجو می‌باشد.

علاوه بر پیشرفت ابزارهای مدیریت داده، افزایش قابلیت دسترسی به داده و کاهش نرخ نگهداری داده نقش ایفا می‌کند. در طول چند سال گذشته افزایش سریع جمع آوری و نگه داری حجم اطلاعات وجود داشته‌است. با پیشنهادهای برخی از ناظران مبنی بر آنکه کمیت داده‌های دنیا به طور تخمینی هر ساله دوبرابر می‌گردد. در همین زمان هزینه ذخیره سازی داده‌ها بطور قابل توجهی از دلار برای هر مگابایت به پنی برای مگابایت کاهش پیدا کرده‌است. مطابقا قدرت محاسبه‌ها در هر ۱۸ – ۲۴ ماه به دوبرابر ارتقاء پیدا کرده‌است این در حالی است که هزینه قدرت محاسبه رو به کاهش است. داده کاو به طور معمول در دو حوزه خصوصی و عمومی افزایش پیدا کرده‌است. سازمانها داده کاوی را به عنوان ابزاری برای بازدید اطلاعات مشتریان کاهش تقلب و اتلاف و کمک به تحقیقات پزشکی استفاده می‌کنند. با اینهمه ازدیاد داده کاوی به طبع بعضی از پیاده سازی و پیامد اشتباه را هم دارد.اینها شامل نگرانی‌هایی در مورد کیفیت داده‌ای که تحلیل می‌گردد، توانایی کار گروهی پایگاههای داده و نرم‌افزارها بین ارگانها و تخطی‌های بالقوه به حریم شخصی می‌باشد.همچنین ملاحظاتی در مورد محدودیتهایی در داده کاوی در ارگان‌ها که کارشان تاثیر بر امنیت دارد، نادیده گرفته می‌شود.






محدودیت‌های داده کاوی

در حالیکه محصولات داده کاوی ابزارهای قدرتمندی می‌باشند، اما در نوع کاربردی کافی نیستند.برای کسب موفقیت، داده کاوی نیازمند تحلیل گران حرفه‌ای و متخصصان ماهری می‌باشد که بتوانند ترکیب خروجی بوجود آمده را تحلیل و تفسیر نمایند.در نتیجه محدودیتهای داده کاوی مربوط به داده اولیه یا افراد است تا اینکه مربوط به تکنولوژی باشد.

اگرچه داده کاوی به الگوهای مشخص و روابط آنها کمک می‌کند، اما برای کاربر اهمیت و ارزش این الگوها را بیان نمی‌کند.تصمیماتی از این قبیل بر عهده خود کاربر است.برای نمونه در ارزیابی صحت داده کاوی، برنامه کاربردی در تشخیص مظنونان تروریست طراحی شده که ممکن است این مدل به کمک اطلاعات موجود در مورد تروریستهای شناخته شده، آزمایش شود.با اینهمه در حالیکه ممکن است اطلاعات شخص بطور معین دوباره تصدیق گردد، که این مورد به این منظور نیست که برنامه مظنونی را که رفتارش به طور خاص از مدل اصلی منحرف شده را تشخیص بدهد.

تشخیص رابطه بین رفتارها و یا متغیرها یکی دیگر از محدودیتهای داده کاوی می‌باشد که لزوماًروابط اتفاقی را تشخیص نمی‌دهد.برای مثال برنامه‌های کاربردی ممکن است الگوهای رفتاری را مشخص کند، مثل تمایل به خرید بلیط هواپیما درست قبل از حرکت که این موضوع به مشخصات درآمد، سطح تحصیلی و استفاده از اینترنت بستگی دارد.در حقیقت رفتارهای شخصی شامل شغل(نیاز به سفر در زمانی محدود)وضع خانوادگی(نیاز به مراقبت پزشکی برای مریض)یا تفریح (سود بردن از تخفیف دقایق پایانی برای دیدن مکان‌های جدید) ممکن است بر روی متغیرهای اضافه تاثیر بگذارد.
ابزارهای داده کاوی

معروف‌ترین ابزارهای داده‌کاوی به ترتیب پرطرفدار بودن

Clementine که نسخه ۱۳ ان با نام SPSS Modeler نامیده می‌شود.

رپیدماینر
نرم‌افزار وکا







نرم‌افزار
برنامه های کاربردی و نرم‌افزار های داده کاوی متن-باز رایگان

Carrot2: پلتفرمی برای خوشه بندی متن و نتایج جستجو
Chemicalize.org: یک کاوشگر ساختمان شیمیایی و موتور جستجوی وب
ELKI: یک پروژه تحقیقاتی دانشگاهی با تحلیل خوشه ای پیشرفته و روش های تشخیص داده های خارج از محدوده که به زبان جاوا نوشته شده است.
GATE: یک پردازشگر زبان بومی و ابزار مهندسی زبان.






برنامه های کاربردی و نرم‌افزار های داده کاوی تجاری

Angoss KnowledgeSTUDIO: ابزار داده کاوی تولید شده توسط Angoss.
BIRT Analytics: ابزار داده کاوی بصری و تحلیل پیش بینی گر تولید شده توسط Actuate Corporation.
Clarabridge: راه حل تحلیلگر کلاس متن.
(E-NI(e-mining, e-monitor: ابزار داده کاوی مبتنی بر الگوهای موقتی.
IBM SPSS Modeler: نرم‌افزار داده کاوی تولید شده توسط IBM
Microsoft Analysis Services: نرم‌افزار داده کاوی تولید شده توسط مایکروسافت
Oracle Data Mining: نرم‌افزار داده کاوی تولید شده توسط اوراکل (کمیک)






بررسی اجمالی بازار نرم‌افزار های داده کاوی

تا کنون چندین محقق و سازمان بررسی هایی را بر روی ابزار های داده کاوی و راهنماییهایی برای داده کاو ها تهیه دیده اند. این بررسی ها بعضی از نقاط ضعف و قوت بسته های نرم‌افزاری را مشخص می کنند. همچنین خلاصه ای را از رفتار ها، اولویت ها و دید های داده کاوها تهیه کرده اند





درجه آزادی (آمار)

درجه آزادی یکی از مفاهیم بنیادین در آمار است. درک بسیاری از مفاهیم مطرح در آمار وابسته به درک مناسبی از این مفهوم است. بر اساس زمینهٔ کاربرد و شیوهٔ نگرش می‌توان تعاریف مختلفی برای آن ارائه نمود که همه یک مفهومند:

در نظریهٔ برآورد:

تعداد مقادیری که یک آماره امکان تغییر دارد

تعداد مشاهدات مستقل منهای تعداد پارامترهای برآورد شده.

بطور معادل: تعداد مشاهدات مستقل منهای تعداد روابط معلوم میان مشاهدات

در نظریه آزمون:

بعد فضای مجهول (مدل کامل) منهای بعد فضای مفروض (مدل مقید)

در جبر خطی:

رتبهٔ یک فرم درجه دوم

بطور معادل: تعداد ابعاد یک زیر فضا که یک بردار می‌تواند آزادانه گردش کند (مربع طول بردار یک فرم درجه دوم است)






درک شهودی

مثال: یک عدد ثابت امکان تغییر ندارد پس درجه آزادی آن برابر صفر است.

یک نقطه در صفحه یک رابطه میان دو متغیر در فضای دو بعدی است. با این نقطه نمیتوان میزان همبستگی خطی دو متغیر را با برآورد خط رگرسیون تخمین زد. چون بینهایت خط از این نقطه گذراست. (تصویر مقابل) در این مثال درجه آزادی صفر است (تعداد مشاهدات مستقل - تعداد روابط معلوم میان مشاهدات = 0) اگر خطی را بعنوان خط رگرسیونی در نظر بگیریم، این مدل نه قابل رد و نه قابل قبول است. بنابراین تعداد نمونه های قابل استفاده برای این مدل صفر است.

برای رسم خط رگرسیون حداقل دو نقطه لازم است. با دو نقطه یک درجه آزادی وجود دارد. از دو نقطه فقط یک خط گذر میکند و این خط تنها برآورد ممکن است. با اینکه دقت برآورد 100 درصد است اما این دقت کاذب به علت کم بودن درجات آزادی و اطلاعات قابل استفاده است. نمونه های زیادی از تحقیقات با رسیدن به دقتی بالا تصور میکنند که مدل بدست آمده مناسب است . در حالی که درجات آزادی کم باعث این اشتباه شده است.

مثال: اگر دو مشاهده داشته باشیم، برای برآورد میانگین دو مشاهدهء مستقل داریم، اما برای برآورد واریانس تنها یک مشاهدهء مستقل وجود دارد. زیرا هر دو مشاهده دارای یک فاصله از میانگین هستند.






دیدگاه فلسفی

برای درک بهتر این مفهوم میتوان درجهء آزادی را یک معادل برای درجهء ابطال پذیری از دیدگاه فلاسفه ای مانند کارل پوپر دانست. اگر در مسئله ای درجات آزادی کم

باشد معادل است با اینکه ابطال پذیری آن مسئله کم است. یعنی با هر مشاهده ای تایید میشود و قابل ابطال نیست.





سازمان آماری
سازمان آماری سازمانی خدماتی است که وظیفهٔ تهیهٔ آمار را بر عهده دارد. دلیل وجود، رشد و مشارکت مشهود آنها در امور مربوط به دولت و جامعةخود، از توانایی آنها در تهیة اطلاعاتی برای حل مسائل مهم ریشه می‌گیرد. ولی اولویتها می‌توانند سریعتر از توانایی سازمان برای تعدیل تلاش تولیدی خود تغییر کنند. به این دلیل، مهم است که مسئولان ارشد آن دارای شم قوی و روابطی باشند که بتوانند مشکلات جدی را شناسایی کرده و آنها را از آنچه ممکن است چیزی جز مسایل گذرا نباشند متمایز کنند.





شاخص‌های پراکندگی

سنجش‌های پراکندگی (به انگلیسی: Measures of Variability) به اعدادی گویند که پراکندگی مجموعه‌ای از مشاهدات یا داده‌های اندازه گیری شده‌ای را خلاصه و توصیف می‌کنند.

دامنه، واریانس، و انحراف معیار، هر سه نمونه‌هایی از سنجش‌های پراکندگی هستند.





ضریب تغییرات
در نظریه احتمال و آمار ضریب تغییرات (به انگلیسی: coefficient of variation، مخفف:CV) یک معیار بهنجار است که برای اندازه‌گیری توزیع داده‌های آماری به کار می‌رود.

به عبارت دیگر ضریب تغییرات، میزان پراکندگی به ازای یک واحد از میانگین را بیان می‌کند. این مقدار زمانی تعریف شده است که میانگین صفر نباشد.

این مقدار بی‌بعد است به همین دلیل مناسب برای مقایسه داده‌های آماری است که واحدهای مختلفی دارند.

ضریب تغییرات تنها قابل کاربرد برای مقیاس‌های نسبی است و نمی‌توان ار آن برای سنجش مقادیری که می‌توانند مقدار منفی بگیرند استفاده کرد یا به بیان بهتر نمی‌توان از آن برای سنجش مقادیر فاصله‌ای بهره برد. مثلاً اگر درجه حرارت را با مقیاس فارنهایت در نظر بگیریم برای آن نمی‌توان از ضریب تغییر اسفاده کرد و باید از مقیاس کلوین که همیشه مقداری مثبت است استفاده کرد.





متغیر پنهان
متغیرهای پنهان(در مقابل متغیرهای مشاهده شده)در آمار، متغیرهای هستند که بصورت مسقیم قابل مشاهده نیستند اما از میان متغیرهای دیگر که قابل مشاهده هستند توسط یک الگوی ریاضی استنباط می‌شوند. آنها همچنین بعضی وقت‌ها تحت عنوان متغیرهای پنهان، پارامترها ی مدل، متغیرهای فرضی یا ساختارهای فرضی شناخته می‌شوند.. استفاده متغیرهای پنهان در علوم اجتماعی متداول است، اقتصاد، پزشکی و تا حدی روبوتیک اما تعریف دقیق یک متغیر پنهان در این رشته‌ها کمی متفاوت است. مثال‌های از متغیرهای پنهان در حوزه اقتصاد عبارتند از کیفیت زندگی، اطمینان کار، روحیه، خوشحالی و اصول محافظه‌کاری: اینها متغیرها هستند که مستقیماً نمی‌توان آنها را سنجید. با این وجود یک مدل اقتصادی را می‌توان از پیوند این متغیرهای پنهان با متغیرهای مشاهده شده (از قبیل تولید ناخالص داخلی) بدست آورد و مقادیر متغیرهای پنهان را از متغیرهای مشاهده شده محاسبه و استنباط نمود.





متغیر تصادفی

در آمار و احتمال متغیر تصادفی متغیری است که مقدار آن از اندازه‌گیری برخی از انواع فرآیندهای تصادفی بدست می‌آید. بطور رسمی‌تر، متغیر تصادفی تابعی است از فضای نمونه به اعداد حقیقی. بطور مستقیم متغیر تصادفی توصیف عددی خروجی یک آزمایش است (مثل برآمدهای ممکن از پرتاب دو تاس (۱و۱) و (۱و۲) و غیره).

متغیرهای تصادفی به دو نوع گسسته (متغیر تصادفی که ممکن است تعداد محدود یا توالی نامحدودی از مقادیر را بگیرد) و پیوسته (متغیری که ممکن است هر مقدار عددی در یک یا چند بازه را بگیرد) طبقه‌بندی می‌شوند. مقادیر ممکن یک متغیر تصادفی می‌تواند نشان‌دهندهٔ برآمدهای آزمایشی که هنوز انجام نشده یا مقادیر بالقوهٔ یک کمیت که مقدارهای موجود آن نامطمئن هستند (مثلا درنتیجه اطلاعات ناقص یا اندازه‌گیری نادقیق) باشد. یک متغیر تصادفی می‌تواند بعنوان یک کمیت که مقدارش ثابت نیست و مقادیر مختلفی را می‌تواند بگیرد در نظر گرفته شود و توزیع احتمال برای توصیف احتمال اتفاق افتادن آن مقادیر استفاده می‌شود.

متغیرهای تصادفی معمولاً با اعداد حقیقی مقداردهی می‌شوند؛ ولی می‌توان انواع دلخواهی مانند مقدارهای بولی، اعداد مختلط، بردارها، ماتریس‌ها، دنباله‌ها، درخت‌ها، مجموعه‌ها، شکل‌ها، منیوفیلدها، توابع و فرآیندها را درنظر گرفت. عبارت المان تصادفی همه این نوع مفاهیم را دربرمی گیرد.

متغیرهای تصادفی که با اعداد حقیقی مقداردهی می‌شوند، در علوم برای پیش‌بینی براساس داده‌های بدست آمده از آزمایش‌های علمی استفاده می‌شوند. علاوه بر کاربردهای علمی، متغیرهای تصادفی برای آنالیز بازیهای قمار و پدیده‌های تصادفی بوجود آمدند. در چنین مواردی تابعی که خروجی را به یک عدد حقیقی می‌نگارد معمولا یک تابع همانی یا بطور مشابه یک تابع بدیهی است و بطور صریح توصیف نشده است. با این وجود در بسیاری از موارد بهتر است متغیر تصادفی را بصورت توابعی از سایر متغیرهای تصادفی درنظر بگیریم که دراینصورت تابع نگاشت استفاده شده در تعریف یک متغیر تصادفی مهم می‌شود. بعنوان مثال، رادیکال یک متغیر تصادفی با توزیع استاندارد (نرمال) خود یک متغیر تصادفی با توزیع کی دو است. شهود این مطلب بدین صورت است که تصور کنید اعداد تصادفی بسیاری با توزیع نرمال تولید کرده و از هرکدام رادیکال بگیریم و سپس هیستوگرام داده‌های بدست آمده را بکشیم در اینصورت اگر داده‌ها به تعداد کافی باشند، نمودار هیستوگرام تابع چگالی توزیع کی دو را با یک درجه آزادی تقریب خواهد زد.






نام‌های دیگر

در برخی از کتاب‌های قدیمی‌تر به جای «متغیر تصادفی»، اصطلاح‌های «متغیر شانسی» و «متغیر استوکاستیکی» هم به کار رفته است.






انواع

متغیر تصادفی گسسته
متغیر تصادفی پیوسته

با توجه به وضع شمارایی فضای نمونه‌ای S، متغیر می‌تواند گسسته یا پیوسته باشد. اگر S متناهی یا نامتناهی شمارا باشد متغیر تصادفی X گسسته و اگر ناشمارا باشد X پیوسته خواهد بود.

یک توزیع همچنین می تواند از نوع مختلط (mixed) باشد به این صورت که بخشی از آن مقادیر خاصی را بگیرد و بخش دیگر آن مقادیر روی یک بازه را بگیرد.





مقدار موثر
در ریاضیات، جذر متوسط مربع (به انگلیسی: root mean square یا quadratic mean) که با نام مقدار RMS و مقدار مؤثر (به انگلیسی: effective value) نیز شناخته می‌شود، معیاری آماری از اندازه کمیت متغیر است.
10:14 pm
کاربرد برنامه نویسی

زبان برنامه نویسی یک مکانیزم ساخت یافته برای تعریف داده‌ها، و عملیات یا تبدیل‌هایی که ممکن است بطور اتوماتیک روی آن داده انجام شوند، فراهم می‌کند. یک برنامه نویس از انتزاعات آماده در زبان استفاده می‌کند تا مفاهیم به کار رفته در محاسبات را بیان کند. این مفاهیم به عنوان یک مجموعه از ساده‌ترین عناصر موجود بیان می‌شوند(مفاهیم ابتدایی نامیده می‌شوند).





زبان‌های برنامه نویسی با غالب زبان‌های انسانی تفاوتی دارد و آن این است که نیاز به بیان دقیق تر و کامل تری دارد. هنگام استفاده از زبان‌های طبیعی برای ارتباط با دیگر انسان‌ها، نویسندگان و گویندگان می‌توانند مبهم باشند و اشتباهات کوچک داشته باشند، و همچنان انتظار داشته باشند که مخاطب آنها متوجه شده باشد. اگرچه، مجازا، رایانه‌ها "دقیقاً آنچه که به آنها گفته شده را انجام می‌دهند." و نمی‌توانند "بفهمند" که نویسنده دقیقاً چه کدی مد نظر نویسنده بوده‌است] البته امروزه برنامه‌هایی برای انجام این کار تولید شده‌اند و تلاش‌های بسیاری در این زمینه انجام شده ولی هنوز به نتیجهٔ رضایت بخشی نرسیده است[. ترکیب تعریف زبان، یک برنامه، و ورودی برنامه بطور کامل رفتار خروجی را به هنگام اجرای برنامه (در محدوده کنترل آن برنامه) مشخص می‌کند. برنامه‌های یک رایانه ممکن است در یک فرایند ناپیوسته بدون دخالت انسان اجرا شوند، یا یک کاربر ممکن است دستورات را در یک مرحله فعل و انفعال مفسر تایپ کند.در این حالت "دستور"ها همان برنامه‌ها هستند، که اجرای آنها زنجیروار به هم مرتبطند.به زبانی که برای دستور دادن به برنامه‌ای استفاده می‌شود، زبان اسکریپت می‌گویند. بسیاری از زبان‌ها کنار گذاشته شده‌اند، برای رفع نیازهای جدید جایگزین شده‌اند، با برنامه‌های دیگر ترکیب شده‌اند و در نهایت استعمال آنها متوقف شده‌است. با وجود اینکه تلاش‌هایی برای طراحی یک زبان رایانه" کامل" شده‌است که تمام اهداف را تحت پوشش قرار دهد، هیچ یک نتوانستند بطور کلی این جایگاه را پر کنند. نیاز به زبان‌های رایانه‌ای گسترده از گستردگی زمینه‌هایی که زبان‌ها استفاده می‌شوند، ناشی می‌شود:

محدوده برنامه‌ها از متون بسیار کوچک نوشته شده توسط افراد عادی تا سیستم‌های بسیار بزرگ نوشته شده توسط صدها برنامه نویس است
توانایی برنامه نویس‌ها: از تازه کارهایی که بیش از هر چیز به سادگی نیاز دارند تا حرفه‌ای‌هایی که با پیچیدگی قابل توجهی کنار می‌آیند.
برنامه‌ها باید سرعت، اندازه و سادگی را بسته به سیستم‌ها از ریزپردازندها تا ابر رایانه‌ها متناسب نگه دارند.
برنامه‌ها ممکن است یک بار نوشته شوند و تا نسل‌ها تغییر نکنند، و یا ممکن است پیوسته اصلاح شوند.
در نهایت، برنامه نویس‌ها ممکن است در علایق متفاوت باشند: آنها ممکن است به بیان مسائل با زبانی خاص خو گرفته باشند.

یک سیر رایج در گسترش زبان‌های برنامه نویسی این است که قابلیت حل مسائلی با درجات انتزاعی بالاتری را اضافه کنند. زبان‌های برنامه نویسی اولیه به سخت‌افزار رایانه گره خورده بودند. همانطور که زبان‌های برنامه نویسی جدید گسترش پیدا کرده‌اند، ویژگی‌هایی به برنامه‌ها افزوده شده که به برنامه نویس اجازه دهد که ایده‌هایی که از ترجمه ساده به دستورات سخت‌افزار دورتر هستند نیز استفاده کند. چون برنامه نویس‌ها کمتر به پیچیدگی رایانه محدود شده‌اند، برنامه‌های آنها می‌تواند محاسبات بیشتری با تلاش کمتر از سوی برنامه نویس انجام دهند. این به آنها این امکان را می‌دهد که کارایی بیشتردر واحد زمان داشته باشند. "پردازنده‌های زبان طبیعی" به عنوان راهی برای ازبین بردن نیاز به زبان‌های اختصاصی برنامه نویسی پیشنهاد شده‌اند. هرچند، این هدف دور است و فواید آن قابل بحث است. "ادسگر دیجسترا" موافق بود که استفاده از یک زبان رسمی برای جلوگیری از مقدمه سازی ساختارهای بی معنی واجب است، و زبان برنامه نویسی طبیعی را با عنوان "احمقانه" رد کرد، "آلن پرلیس" نیز مشابها این ایده را رد کرد. مطابق با متدولوژی نامتجانس استفاده شده توسط langpop.com در سال ۲۰۰۸، ۱۲ زبان پرکاربرد عبارتند از: C, C++, C#, Java, JavaScript, Perl, PHP, Python, Ruby, Shell, SQL, and Visual Basic.



المان‌ها
تمام زبان‌های بزنامه نویسی تعدادی بلوک‌های ابتدایی برای توضیح داده و پردازش یا تبدیل آنها(مانند جمع کردن دو عدد با انتخاب یک عضو از یک مجموعه)دارند. این " عناصرابتدایی" بوسیله قوانین معناشناسی و دستوری تعریف می‌شوند که ساختار و معنای مربوطه را توضیح می‌دهند.
دستور(
syntax)

فرم سطحی یک زبان برنامه نویسی دستور آن نامیده می‌شود. غالب زبان‌های برنامه نویسی کاملاً متنی اند؛ و از دنبالهٔ متون شامل کلمات، اعداد، نشانگذاری، بسیار شبیه زبان نوشتاری طبیعی استفاده می‌کنند. از طرف دیگر، برنامه‌هایی نیز وجود دارند که بیشتر گرافیکی اند، و از روابط بصری بین سمبل‌ها برای مشخص کردن برنامه استفاده می‌کنند. دستور یک زبان ترکیبات ممکن سمبل‌ها برای ایجاد یک برنامهٔ درست را از نظر دستوری مشخص می‌کند. معنایی که به یک ترکیب سمبل‌ها داده می‌شود با معناشناسی اداره می‌شود(قراردادی یا نوشته شده در پیاده سازی منبع). از آنجا که اغلب زبان‌ها متنی هستند، این مقاله دستور متنی را مورد بحث قرار می‌دهد.

دستور زبان برنامه نویسی معمولاً بوسیله ترکیب عبارات معین(برای ساختار لغوی) و فرم توضیح اعمال(برای ساختار گرامری) تعریف می‌شوند. متن زیر یک گرامر ساده، به زبان lisp است: expression ::= atom | list atom ::= number | symbol number ::= [+-]?['۰'-'۹']+ symbol ::= ['A'-'Za'-'z'].* list ::= '(' expression* ')' این گرامر موارد ذیل را مشخص می‌کند:

یک عبارت یا atom است و یا یک لیست
یک atom یا یک عدد است و یا یک سمبل
یک عدد دنباله ناشکسته‌ای از یک یا تعداد بیشتری اعداد دهدهی است، که یک علامت مثبت و یا منفی می‌تواند پیش از آن بیاید.
یک سمبل حرفی است که بعد از هیچ یا تعدادی کاراکتر (جز فاصله) می‌آید.
یک لیست تعدادی پرانتز است که می‌تواند صفر یا چند عبارت در خود داشته باشد.

"۱۲۳۴۵"، "()"، "(a b c۲۳۲ (۱))" مثال‌هایی هستند از دنباله‌های خوش فرم در این گرامر.

همه برنامه‌هایی که از لحاظ دستوری درست هستند، از نظر معنا درست نیستند. بسیاری از برنامه‌های درست دستوری، بد فرم اند، با توجه به قوانین زبان؛ و ممکن است (بسته به خصوصیات زبان و درست بودن پیاده سازی) به خطای ترجمه و یا استثنا(exception) منتج شود. در برخی موارد، چنین برنامه‌هایی ممکن است رفتار نامشخصی از خود نشان دهند. حتی اگر یک برنامه در یک زبان به خوبی بیان شده باشد، ممکن است دقیقاً مطلوب نویسنده آن نبوده باشد.

به عنوان مثال در زبان طبیعی، ممکن نیست به برخی از جملات درست از لحاظ گرامری، معنای خاصی اطلاق کرد و یا ممکن است جمله نادرست باشد:

"ایده‌های بی رنگ سبز با خشم می‌خوابند."از نظر دستوری خوش فرم است ولی معنای مورد قبولی ندارد.
"جان یک مجرد متاهل است." از نظر دستوری درست است، ولی معنایی را بیان می‌کند که نمی‌تواند درست باشد.

این قسمت از زبان C از نظر دستوری درست است، اما دستوری را انجام می‌دهد که از نظرمعنایی تعریف نشده است(چون p یک اشاره گر خالی است، عمل p->real,p->im معنای خاصی ندارد.) complex *p = NULL; complex abs_p = sqrt (p->real * p->real + p->im * p->im);

گرامر مورد نیاز برای مشخص کردن یک زبان برنامه نویسی می‌تواند با جایگاهش در "سلسله مراتب چامسکی" طبقه بندی شود. دستور اغلب زبان‌های برنامه نویسی می‌تواند بوسیله یک گرامر نوع ۲ مشخص گردد، برای مثال، گرامرهای مستقل از متن.




معناشناسی ایستا
معناشناسی ایستا محدودیت‌هایی بر روی ساختار مجاز متن‌ها تعیین می‌کند که بیان آنها در فرمول دستوری استاندارد مشکل و یا غیر ممکن است. مهمترین این محدودیت‌ها به وسیله سیستم نوع گذاری انجام می‌شود.


سیستم نوع گذاری
یک سیستم نوع گذاری مشخص می‌کند که یک زبان برنامه نویسی چگونه مقادیر و عبارات را در نوع(type) دسته بندی می‌کند، چگونه می‌تواند آن نوع‌ها را تغییر دهد و رفتار متقابل آن‌ها چگونه‌است. این کارعموما توضیح داده ساختارهایی که می‌توانند در آن زبان ایجاد شوند را شامل می‌شود. طراحی و مطالعه سیستم‌های نوع گذاری بوسیله ریاضیات قراردادی را تئوری نوع گذاری گویند.
زبان‌های نوع گذاری شده و بدون نوع گذاری

یک زبان نوع گذاری شده‌است اگر مشخصات هر عملیات، نوع داده‌های قابل اجرا توسط آن را با نشان دادن نوع‌هایی که برای آنها قابل اجرا نیست، تعیین کند. برای مثال، "این متن درون گیومه قرار دارد" یک رشته‌است. در غالب زبان‌های برنامه نویسی، تقسیم یک رشته با یک عدد معنایی ندارد. در نتیجه غالب زبان‌های برنامه نویسی مدرن ممکن است اجرای این عملیات را توسط برنامه‌ها رد کنند. در برخی زبان‌ها، عبارات بی معنی ممکن است هنگام ترجمه(compile) پیدا شود(چک کننده نوع ایستا)، و توسط کامپایلر رد شود، در حالی که در سایر برنامه‌ها، هنگام اجرا پیدا شود.(چک کننده نوع دینامیک) که به استثنای در حال اجرا منتج شود(runtime exception). حالت خاص زبان‌های نوع دار زبان‌های تک نوعند. این زبان‌ها غالباً اسکریپتی و یا مارک آپ هستند، مانند rexx وSGML و فقط یک داده گونه دارند—غالباً رشته‌های کاراکتری که هم برای داده‌های عددی و هم برای داده‌های سمبلی کاربرد دارند. در مقابل، یک زبان بدون نوع گذاری، مثل اکثر زبان‌های اسمبلی، این امکان را می‌دهد که هر عملیاتی روی هر داده‌ای انجام شود، که معمولاً دنباله‌ای از بیت‌ها با طول‌های متفاوت در نظر گرفته می‌شوند. زبان‌های سطح بالا که بی نوع هستند شامل زبان‌های ساده رایانه‌ای و برخی از انواع زبان‌های نسل چهارم.

در عمل، در حالیکه تعداد بسیار کمی از دیدگاه نظریه نوع، نوع گذاری شده تلقی می‌شوند(چک کردن یا رد کردن تمام عملیات‌ها)، غالب زبان‌های امروزی درجه‌ای از نوع گذاری را فراهم می‌کنند. بسیاری از زبان‌های تولیدکننده راهی را برای گذشتن یا موقوف کردن سیستم نوع فراهم می‌کنند.



نوع گذاری ایستا و متحرک

در نوع گذاری ایستا تمام عبارات نوع‌های خود را قبل از اجرای برنامه تعیین می‌کنند(معمولاً در زمان کامپایل). برای مثال، ۱ و (۲+۲) عبارات عددی هستند؛ آنها نمی‌توانند به تابعی که نیاز به یک رشته دارد داده شوند، یا در متغیری که تعریف شده تا تاریخ را نگه دارد، ذخیره شوند.


زبان‌های نوع گذاری شده ایستا می‌توانند با مانیفست نوع گذاری شوند یا با استفاده از نوع استنباط شوند. در حالت اول، برنامه نویس بیشتر صریحاً نوع‌ها را در جایگاه‌های منتنی مشخص می‌نویسد(برای مثال، در تعریف متغیرها). در حالت دوم، کامپایلر نوع عبارات و تعریف‌ها را بر اساس متن استنباط می‌کند. غالب زبان‌های مسیر اصلی(mainstream) ایستا نوع گذاری شده، مانند C#,C++ و Java، با مانیفست نوع گذاری می‌شوند



نوع گذاری قوی و ضعیف

نوع گذاری ضعیف این امکان را ایجاد می‌کند که با متغیری به جای متغیری دیگر برخورد شود، برای مثال رفتار با یک رشته به عنوان یک عدد. این ویژگی بعضی اوقات ممکن است مفید باشد، اما ممکن است باعث ایجاد برخی مشکلات برنامه شود که موقع کامپایل و حتی اجرا پنهان بمانند.

نوع گذاری قوی مانع رخ دادن مشکل فوق می‌شود. تلاش برای انجام عملیات روی نوع نادرست متغیر منجر به رخ دادن خطا می‌شود. زبان‌هایی که نوع گذاری قوی دارند غالباً با نام "نوع-امن" و یا امن شناخته می‌شوند. تمام تعاریف جایگزین برای "ضعیف نوع گذاری شده" به زبان‌ها اشاره می‌کند، مثل perl, JavaScript, C++، که اجازه تعداد زیادی تبدیل نوع داخلی را می‌دهند. در جاوااسکریپت، برای مثال، عبارت ۲*x به صورت ضمنی x را به عدد تبدیل می‌کند، و این تبدیل موفقیت آمیز خواهد بود حتی اگر x خالی، تعریف نشده، یک آرایه، و یا رشته‌ای از حروف باشد. چنین تبدیلات ضمنی غالباً مفیدند، اما خطاهای برنامه نویسی را پنهان می‌کنند.

قوی و ایستا در حال حاضر عموماً دو مفهوم متعامد فرض می‌شوند، اما استفاده در ادبیات تفاوت دارد، برخی عبارت "قوی نوع گذاری شده" را به کار می‌برند و منظورشان قوی، ایستایی نوع گذاری شده‌است، و یا، حتی گیچ کننده تر، منظورشان همان ایستایی نوع گذاری شده‌است. بنابراین C هم قوی نوع گذاری شده و هم ضعیف و ایستایی نوع گذاری شده نامیده می‌شود.



معناشناسی اجرا

وقتی که داده مشخص شد، ماشین باید هدایت شود تا عملیات‌ها را روی داده انجام دهد. معناشناسی اجرا ی یک زبان تعیین می‌کند که چگونه و چه زمانی ساختارهای گوناگون یک زبان باید رفتار برنامه را ایجاد کنند.

برای مثال، معناشناسی ممکن است استراتژی را که بویسله آن عبارات ارزیابی می‌شوند را تعریف کند و یا حالتی را که ساختارهای کنترلی تحت شرایطی دستورها را اجرا می‌کنند.


کتابخانه هسته
اغلب زبان‌های برنامه نویسی یک کتابخانه هسته مرتبط دارند(گاهی اوقات "کتابخانه استاندارد" نامیده می‌شوند، مخصوصا وقتی که به عنوان قسمتی از یک زبان استاندارد ارائه شده باشد)، که به طور قراردادی توسط تمام پیاده سازی‌های زبان در دسترس قرار گرفته باشند. کتابخانه هسته معمولاً تعریف الگوریتم‌ها، داده ساختارها و مکانیزم‌های ورودی و خروجی پرکاربرد را در خود دارد. کاربران یک زبان، غالباً با کتابخانه هسته به عنوان قسمتی از آن رفتار می‌کنند، اگرچه طراحان ممکن است با آن به صورت یک مفهوم مجزا رفتار کرده باشند. بسیاری از خصوصیات زبان هسته‌ای را مشخص می‌کنند که باید در تمام پیاده سازی‌ها موجود باشند، و در زبان‌های استاندارد شده این کتابخانه هسته ممکن است نیاز باشد. بنابراین خط بین زبان و کتابخانه هسته آن از زبانی به زبان دیگر متفاوت است. درواقع، برخی زبان‌ها به گونه‌ای تعریف شده‌اند که برخی از ساختارهای دستوری بدون اشاره به کتابخانه هسته قابل استفاده نیستند. برای مثالف در جاوا، یک رشته به عنوان نمونه‌ای از کلاس “java.lang.String” تعریف شده است؛ مشابها، در سمال تاک(smalltalk) یک تابع بی نام(یک "بلاک") نمونه‌ای از کلاس BlockContext کتابخانه می‌سازد. بطور معکوس، Scheme دارای چندین زیرمجموعه مرتبط برای ایجاد سایر ماکروهای زبان می‌باشد، و در نتیجه طراحان زبان حتی این زحمت را نیز تحمل نمی‌کنند که بگویند کدام قسمت زبان به عنوان ساختارهای زبان باید پیاده سازی شوند، و کدام یک به عنوان بخشی ازکتابخانه.


عمل
طراحان زبان و کاربران باید مصنوعاتی ایجاد کنند تا برنامه نویسی را در عمل ممکن سازند و کنترل کنند. مهمترین این مصنوعات خصوصیات و پیاده سازی‌های زبان هستند.



خصوصیات

یک زبان برنامه نویسی باید تعریفی فراهم کند که کاربران و پیاده کننده‌های زبان می‌توانند از آن استفاده کنند تا مشخص کنند که رفتار یک برنامه درست است. با داشتن کد منبع: خصوصیات یک زبان برنامه نویسی چندین قالب می‌تواند بگیرد، مانند مثال‌های زیر:

تعریف صریح دستور، معناشناسی ایستا، ومعناشناسی اجرای زبان. درحالیکه دستور معمولاً با یک معناشناسی قراردادی مشخص می‌شود، تعاریف معناشناسی ممکن است در زبان طبیعی نوشته شده باشند (مثل زبان C)، یا معناشناسی قراردادی(مثل StandardML ,Scheme)
توضیح رفتار یک مترجم برای زبان(مثل C,fortran). دستور و معناشناسی یک زبان باید از این توضیح استنتاج شوند، که ممکن است به زبان طبیعی یا قراردادی نوشته شود.
پیاده سازی منبع یا مدل. گاهی اوقات در زبان‌های مشخص شده(مثل: prolog,ANSI REXX).دستور و معناشناسی صریحاً در رفتار پیاده سازی مدل موجودند.


پیاده سازی

پیاده سازی یک زبان برنامه نویسی امکان اجرای آن برنامه را روی پیکربندی مشخصی از سخت‌افزار و نرم‌افزار را فراهم می‌کند. بطور وسیع، دو راه رسیدن به پیاده سازی زبان برنامه نویسی وجود دارد. کامپایل کردن و تفسیر کردن. بطور کلی با هر بک از ابن دو روش می‌توان یک زبان را پیاده سازی کرد.

خروجی یک کامپایلر ممکن است با سخت‌افزار و یا برنامه‌ای به نام مفسر اجرا شود. در برخی پیاده سازی‌ها که از مفسر استفاده می‌شود، مرز مشخصی بین کامپایل و تفسیر وجود ندارد. برای مثال، برخی پیاده سازی‌های زبان برنامه نویسی بیسیک کامپایل می‌کنند و سپس کد را خط به خط اجرا می‌کنند.

برنامه‌هایی که مستقیماً روی سخت‌افزار اجرا می‌شوند چندین برابر سریعتر از برنامه‌هایی که با کمک نرم‌افزار اجرا می‌شوند، انجام می‌شوند.

یک تکنیک برای بهبود عملکرد برنامه‌های تفسیر شده کامپایل در لحظه آن است. در این روش ماشین مجازی، دقیقاً قبل از اجرا، بلوک‌های کدهای بایتی که قرار است استفاده شوند را برای اجرای مستقیم روی سخت‌افزار ترجمه می‌کند.



تاریخچه
پیشرفت‌های اولیه

اولین زبان برنامه نویسی به قبل از رایانه‌های مدرن باز می‌گردد. قرن ۱۹ دستگاه‌های نساجی و متون نوازنده پیانو قابل برنامه نویسی داشت که امروزه به عنوان مثال‌هایی از زبان‌های برنامه نویسی با حوزه مشخص شناخته می‌شوند. با شروع قرن بیستم، پانچ کارت‌ها داده را کد گذاری کردند و پردازش مکانیکی را هدایت کردند. در دهه ۱۹۳۰ و ۱۹۴۰، صورت گرایی حساب لاندای آلونزو چرچ و ماشین تورینگ آلن تورینگ مفاهیم ریاضی بیان الگوریتم‌ها را فراهم کردند؛ حساب لاندا همچنان در طراحی زبان موثر است.

در دهه ۴۰، اولین رایانه‌های دیجیتال که توسط برق تغذیه می‌شدند ایجاد شدند. اولین زبان برنامه نویسی سطح بالا طراحی شده برای کامپیوتر پلانکالکول بود، که بین سال‌های ۱۹۴۵ و ۱۹۴۳ توسط کنراد زوس برای ز۳ آلمان طراحی شد.

کامپیوترهای اوایل ۱۹۵۰، بطور خاص ÜNIVAC ۱ و IBM ۷۰۱ از برنامه‌های زبان ماشین استفاده می‌کردند. برنامه نویسی زبان ماشین نسل اول توسط نسل دومی که زبان اسمبلی نامیده می‌شوند جایگزین شد. در سال‌های بعد دهه ۵۰، زبان برنامه نویسی اسمبلی، که برای استفاده از دستورات ماکرو تکامل یافته بود، توسط سه زبان برنامه نویسی سطح بالا دیگر: FORTRAN,LISP , COBOL مورد استفاده قرار گرفت. نسخه‌های به روز شده این برنامه‌ها همچنان مورد استفاده قرار می‌گیرند، و هر کدام قویا توسعه زبان‌های بعد را تحت تاثیر قرار دادند. در پایان دهه ۵۰ زبان algol ۶۰ معرفی شد، و بسیاری از زبان‌های برنامه نویسی بعد، با ملاحظه بسیار، از نسل algol هستند. قالب و استفاده از زبان‌های برنامه نویسی به شدت متاثر از محدودیت‌های رابط بودند.



پالایش

دوره دهه ۶۰ تا اواخر دهه ۷۰ گسترش مثال‌های عمده زبان پرکاربرد امروز را به همراه داشت. با این حال بسیاری از جنبه‌های آن بهینه سازی ایده‌های اولیه نسل سوم زبان برنامه نویسی بود:

APL برنامه نویسی آرایه‌ای را معرفی کرد و برنامه نویسی کاربردی را تحت تاثیر قرار داد.
PL/i(NPL) دراوایل دهه ۶۰ طراحی شده بود تا ایده‌های خوب فورترن و کوبول را بهم پیوند دهد.
در دهه ۶۰، Simula اولین زبانی بود که برنامه نویسی شئ گرا را پشتیبانی می‌کرد، در اواسط دهه۷۰. Smalltalk به دنبال آن به

عنوان اولین زبان کاملاً شئ گرا معرفی شد.

C بین سال‌های ۱۹۶۹ تا ۱۹۷۳ به عنوان زبان برنامه نویسی سیستمی طراحی شد و همچنان محبوب است.
Prolog، طراحی شده در ۱۹۷۲، اولین زبان برنامه نویسی منطقی بود.
در ۱۹۷۸ ML سیستم نوع چند ریخت روی لیسپ ایجاد کرد، و در زبان‌های برنامه نویسی کاربردی ایستا نوع گذاری شده پیشگام شد.

هر یک از این زبان‌ها یک خانواده بزرگ از وارثین از خود به جای گذاشت، و مدرنترین زبان‌ها از تبار حداقل یکی از زبان‌های فوق به شمار می‌آیند.

دهه‌های ۶۰ و ۷۰ مناقشات بسیاری روی برنامه نویسی ساخت یافته به خود دیدند، و اینکه آیا زبان‌های برنامه نویسی باید طوری طراحی شوند که آنها را پشتیبانی کنند.

"ادسگر دیکسترا" در نامه‌ای معروف در ۱۹۶۸ که در ارتباطات ACM منتشر شد، استدلال کرد که دستورgoto باید از تمام زبان‌های سطح بالا حذف شود.

در دهه‌های ۶۰ و ۷۰ توسعهٔ تکنیک‌هایی صورت گرفت که اثر یک برنامه را کاهش می‌داد و در عین حال بهره وری برنامه نویس و کاربر را بهبود بخشید. دسته کارت برای ۴GL اولیه بسیار کوچکتر از برنامهٔ هم سطح بود که با ۳GL deck نوشته شده بود.




یکپارچگی و رشد

دهه ۸۰ سال‌های یکپارچگی نسبی بود. C++ برنامه نویسی شئ گرا و برنامه نویسی سیستمی را ترکیب کرده بود. ایالات متحده ایدا(زبان برنامه نویسی سیستمی که بیشتر برای استفاده توسط پیمان کاران دفاعی بود) را استاندارد سازی کرد. در ژاپن و جاهای دیگر، هزینه‌های گزافی صرف تحقیق در مورد زبان نسل پنجم می‌شد که دارای ساختارهای برنامه نویسی منطقی بود. انجمن زبان کاربردی به سمت استانداردسازی ML و Lisp حرکت کرد. به جای ایجاد مثال‌های جدید، تمام این تلاش‌ها ایده‌هایی که در دهه‌های قبل حلق شده بودند را بهتر کرد.

یک گرایش مهم در طراحی زبان در دهه ۸۰ تمرکز بیشتر روی برنامه نویسی برای سیستم‌های بزرگ از طریق مدول‌ها، و یا واحدهای کدهای سازمانی بزرگ مقیاس بود. مدول-۲، ایدا. و ML همگی سیستم‌های مدولی برجسته‌ای را در دهه ۸۰ توسعه دادند. با وجود اینکه زبان‌های دیگر، مثل PL/i، پشتیبانی بسیار خوبی برای برنامه نویسی مدولی داشتند. سیستم‌های مدولی غالباً با ساختارهای برنامه نویسی عام همراه شده‌اند.

رشد سریع اینترنت در میانه دهه ۹۰ فرصت‌های ایجاد زبان‌های جدید را فراهم کرد. Perl، در اصل یک ابزار نوشتن یونیکس بود که اولین بار در سال ۱۹۸۷ منتشر شد، در وب‌گاه‌های دینامیک متداول شد. جاوا برای برنامه نویسی جنب سروری مورد استفاده قرار گرفت. این توسعه‌ها اساساً نو نبودند، بلکه بیشتر بهینه سازی شده زبان و مثال‌های موجود بودند، و بیشتر بر اساس خانواده زبان برنامه نویسی C بودند. پیشرفت زبان برنامه نویسی همچنان ادامه پیدا می‌کند، هم در تحقیقات و هم در صنعت. جهت‌های فعلی شامل امنیت و وارسی قابلیت اعتماد است، گونه‌های جدید مدولی(mixin، نماینده‌ها، جنبه‌ها) و تجمع پایگاه داده.

۴GLها نمونه‌ای از زبان‌هایی هستند که محدوده استفاده آنها مشخص است، مثل SQL. که به جای اینکه داده‌های اسکالر را برگردانند، مجموعه‌هایی را تغییر داده و بر می‌گردانند که برای اکثر زبان‌ها متعارفند. Perl برای مثال، با "مدرک اینجا" خود می‌تواند چندین برنامه ۴GL را نگه دارد، مانند چند برنامه جاوا سکریبت، در قسمتی از کد پرل خود و برای پشتیبانی از چندین زبان برنامه نویسی با تناسب متغیر در "مدرک اینجا" استفاده کند.




سنجش استفاده از زبان

مشکل است که مشخص کنیم کدام زبان برنامه نویسی بیشتر مورد استفاده‌است، و اینکه کاربرد چه معنی می‌دهد با توجه به زمینه تغییر می‌کند. یک زبان ممکن است زمان بیشتری از برنامه نویس بگیرد، زبان دیگر ممکن است خطوط بیشتری داشته باشد، و دیگری ممکن است زمان بیشتری از پردازنده را مصرف کند. برخی زبان‌ها برای کاربردهای خاص بسیار محبوبند. برای مثال: کوبول همچنان در مراکزداده متحد، غالباً روی کامپیوترهای بزرگ توانا است؛ fortran در مهندسی برنامه‌های کاربردی، C در برنامه‌های تعبیه شده و سیستم‌های عامل؛ و بقیه برنامه‌ها معمولاً برای نوشتن انواع دیگر برنامه‌ها کاربرد دارند. روش‌های مختلفی برای سنجش محبوبیت زبان‌ها، هر یک متناسب یا یک ویژگی محوری متفاوت پیشنهاد شده‌است:

شمارش تعداد تبلیغات شغلی که از آن زبان نام می‌برند.
تعداد کتاب‌های آموزشی و شرح دهندهٔ آن زبان که فروش رفته‌است.
تخمین تعداد خطوطی که در آن زبان نوشته شده اند- که ممکن است زبان‌هایی را که در جستجوها کمتر پیدا می‌شوند دست کم گرفته شوند.
شمارش ارجاع‌های زبان(برای مثال، به اسم زبان) در موتورهای جستجوهای اینترنت.

طبقه بندی‌ها هیچ برنامه غالبی برای دسته بندی زبان‌های برنامه نویسی وجود ندارد. یک زبان مشخص معمولاً یک زبان اجدادی ندارد. زبان‌ها معمولاً با ترکیب المان‌های چند زبان پیشینه بوجود می‌آیند که هربار ایده‌های جدید درگردشند. ایده‌هایی که در یک زبان ایجاد می‌شوند در یک خانواده از زبان‌های مرتبط پخش می‌شوند، و سپس از بین خلاهای بین خانواده‌ها منتقل شده و در خانواده‌های دیگر ظاهر می‌شوند.

این حقیقت که این دسته بندی ممکن است در راستای محورهای مختلف انجام شوند، این وظیفه را پیچیده تر می‌کند؛ برای مثال، جاوا هم یک زبان شیءگرا(چون به برنامه نویسی شیءگرا تشویق می‌کند) و زبان همزمان(چون ساختارهای داخلی برای اجرای چندین جریان موازی دارد) است. پایتون یک زبان اسکریپتی شیءگراست.

در نگاه کلی، زبان‌های برنامه نویسی به مثال‌های برنامه نویسی و یک دسته بندی بر اساس محدوده استفاده تقسیم می‌شوند. مثال‌ها شامل برنامه نویسی رویه‌ای، برنامه نویسی شیءگرا، برنامه نویسی کاربردی، وبرنامه نویسی منطقی؛ برخی زبان‌ها ترکیب چند مثالند. یک زبان اسمبلی مثالی از یک مدل مستقیم متضمن معماری ماشین نیست. با توجه به هدف، زبان‌های برنامه نویسی ممکن است همه منظوره باشند، زبان‌های برنامه نویسی سیستمی، زبان‌های اسکریپتی، زبان‌های محدوده مشخص، زبان‌های همزمان/ گسترده(و یا ترکیب اینها). برخی زبان‌های همه منظوره تا حد زیادی برای اهداف آموزشی طراحی شده‌اند.

یک زبان برنامه نویسی ممکن است با فاکتورهای غیر مرتبط به مثال‌های برنامه نویسی دسته بندی شود. برای مثال، غالب زبان‌های برنامه نویسی کلمات کلیدی زبان انگلیسی را استفاده می‌کنند، در حالیکه تعداد کمی این کار را نمی‌کنند. سایر زبان‌ها ممکن است براساس داخلی بودن یا نبودن دسته بندی شوند.
ساعت : 10:14 pm | نویسنده : admin | طراحی وب امیر | مطلب قبلی
طراحی وب امیر | next page | next page